Received 20 April 2006

Accepted 2 May 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

M Khawar Rauf,^a* Amin Badshah^a and Michael Bolte^b

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ^bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Correspondence e-mail: aminbadshah@yahoo.com

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.004 Å R factor = 0.040 wR factor = 0.093 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2006 International Union of Crystallography All rights reserved

1-(3-Chlorobenzoyl)-3-(3-chlorophenyl)thiourea

The chlorophenyl and benzoyl groups in the title compound, $C_{14}H_{10}Cl_2N_2OS$, are *cis* and *trans*, respectively, with respect to the C=S bond. The crystal packing is characterized by N-H···O, N-H···S and N-H···Cl hydrogen bonds.

Comment

N-Substituted and N,N'-disubstituted thiourea derivatives are of practical interest, due to their coordination behaviour towards transition metals (Schuster *et al.*, 1990) and their biological activity (Frech *et al.*, 1970; Madan & Taneja, 1991).

The title compound, (I) (Fig. 1), is a typical N,N'-disubstituted thiourea derivative with normal geometric parameters (Cambridge Structural Database, Version 5.27 plus one update; *MOGUL* Version 1.1; Allen, 2002). The C2=S1 and C1=O1 bonds (Table 1) both show the expected full doublebond character, while the short values for the C1-N1, C2-N1, C2-N2, and C21-N2 bond lengths indicate partial double-bond character.

The dihedral angle between the aromatic rings is $8.06 (5)^{\circ}$, and the corresponding angles to the thiourea plane are 43.56 (5)° for the C11–C16 ring and 48.93 (5)° for the C21–C26 ring.

An intramolecular $N-H\cdots O$ hydrogen bond is present (Table 2), forming a six-membered ring commonly observed in this class of compounds (Arslan *et al.*, 2004; Khawar Rauf *et al.*, 2006). In the crystal packing, intermolecular $N-H\cdots S$ and $C-H\cdots Cl$ hydrogen bonds link the molecules into centro-symmetric dimers stacked along the direction of the *a* axis (Fig. 2).

Experimental

Freshly prepared 3-chlorobenzoyl chloride (1.75 g, 10 mmol) was added to a suspension of KSCN (1.00 g, 10 mmol) in acetone (20 ml). The reaction mixture was stirred for 15 min, and then neat 3-chloroaniline (1.27 g, 10 mmol) was added and the resulting mixture stirred for 1 h. The reaction mixture was then poured into acidified

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The crystal packing of (I), viewed along [100], with hydrogen bonds indicated as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

water and stirred well. The solid product which formed was separated, washed with deionized water and purified by recrystallization from methanol-dichloromethane (1:1) to give fine crystals of the title compound, (I), in an overall yield of 85%. Full spectroscopic and physical characterization will be reported elsewhere.

Crystal data

CtaHtoClaNaOS	Z = 4
$M_r = 325.20$	$D_x = 1.547 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 3.9523 (4) Å	$\mu = 0.61 \text{ mm}^{-1}$
b = 23.762 (3) Å	T = 173 (2) K
c = 14.8970 (14) Å	Needle, colourless
$\beta = 93.887 (8)^{\circ}$	$0.34 \times 0.14 \times 0.13 \text{ mm}$
V = 1395.8 (3) Å ³	
Data collection	
Stoe IPDS-II two-circle	8762 measured reflection
diffractometer	2591 independent reflec
ω scans	2024 reflections with $I >$
Absorption correction: multi-scan	$R_{\rm int} = 0.080$
(MULADE Cash 2002 Dissing	0 25 (0

(MULABS; Spek, 2003; Blessing, 1995) $T_{\min} = 0.820, T_{\max} = 0.925$

ns ctions $2\sigma(I)$ $\theta_{\rm max} = 25.6$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0481P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.093$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 0.99	$\Delta \rho_{\rm max} = 0.26 \text{ e } \text{\AA}^{-3}$
2591 reflections	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
190 parameters	Extinction correction: SHELXL97
H atoms treated by a mixture of	(Sheldrick, 1997)
independent and constrained	Extinction coefficient: 0.0073 (14)
refinement	

Table 1

Selected bond lengths (Å).

\$1-C2	1.679 (3)	N1-C2	1.409 (3)
C1-O1	1.224 (3)	C2-N2	1.335 (3)
C1-N1	1.387 (3)	N2-C21	1.442 (3)
			· · ·

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H2···O1	0.90 (4)	1.97 (3)	2.674 (3)	134 (3)
$N1 - H1 \cdot \cdot \cdot S1^i$	0.92(4)	2.66 (4)	3.571 (2)	175 (3)
$N2-H2\cdots Cl1^{ii}$	0.90 (4)	2.98 (4)	3.773 (3)	149 (3)
Summatry and as (i)	w 1	$\pi + 1$; (ii) x		

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

H atoms bonded to C were included in calculated positions, with C-H = 0.95 Å, and refined as riding on their parent atoms, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. H atoms bonded to N were refined freely.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

MKR is grateful to the Higher Education Commission of Pakistan for financial support for a PhD programme under scholarship No. (PIN) ILC (0363104).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Arslan, H., Flörke, U. & Külcü, N. (2004). Turk. J. Chem. 28, 673-678.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Frech, F. A., Blanz, E. J., Amaral, J. R. D. & French, D. A. (1970). J. Med. Chem. 13, 1117-1124.
- Khawar Rauf, M., Badshah, A., Saeed, A. & Bolte, M. (2006). Acta Cryst. E62, 01262-01263.
- Madan, V. K. & Taneja, A. D. (1991). Indian Chem. Soc. 68, 471-472.
- Schuster, M., Kugler, B. & Konig, K. H. (1990). J. Anal. Chem. 338, 717-720.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.